
J .  Fluid Mech. (1995), uol. 304. p p .  263-283 
Copyright @ 1995 Cambridge University Press 

263 

On hydromagnetic instabilities driven by the 
Hartmann boundary layer in a rapidly 

rotating sphere 

By K E K E  ZHANG' A N D  F. H. BUSSE2 
'Department of Mathematics, University of Exeter, UK 
'Institute of Physics, University of Bayreuth, Germany 

(Received 14 July 1994 and in revised form 19 July 1995) 

The instability of an electrically conducting fluid of magnetic diffusivity 1 and viscosity 
v in a rapidly rotating spherical container of magnetic diffusivity f in the presence of 
a toroidal magnetic field is investigated. Attention is focused on the case of a toroidal 
magnetic field induced by a uniform current density parallel to the axis of rotation, 
which was first studied by Malkus (1967). We show that the internal ohmic dissipation 
does not affect the stability of the hydromagnetic solutions obtained by Malkus (1967) 
in the limit of small 1. It is solely the effect of the magnetic Hartmann boundary layer 
that causes instabiljties of the otherwise stable solutions. When the container is a 
perfect conductor, 1 = 0, the hydromagnetic instabilities grow at a rate proportional 
to the magnetic Ekman number of the fluid E l ;  when the container is a nearly 
perfect insulator, 1/24 1, the hydromagnetic instabilities grow at a rate proportional 
to E;(*; when the container is a nearly perfect conductor, f/Aal, the growth rates 

are proportional to i?1'/2, where 8, is the magnetic Ekman number based on the 
diffusivity f of the container. The main characteristics of the instabilities are not 
affected by varying magnetic properties of the container. In light of the destabilizing 
role played by the Hartmann boundary layer, we also examine the corresponding 
magnetoconvection in a rapidly rotating fluid sphere with the perfectly conducting 
container and stress-free velocity boundary conditions. Analytical magnetoconvection 
solutions in closed form are obtained and implications are discussed. 

1. Introduction 
It is well-known that the geomagnetic field undergoes variations on the char- 

acteristic time scales of decades to centuries (the geomagnetic secular variation) 
(Jacobs 1975). A particular feature of the geomagnetic secular variation that has 
received much attention is the west drift of about 0.2" of longitude per year of the 
non-axisymmetric component of the field. An important attempt was first made by 
Hide (1966) to interpret this feature as a manifestation of hydromagnetic waves in 
association with the toroidal magnetic field in the Earth's fluid core (see also Hide & 
Stewartson 1972). Assuming a plausible strength of a uniform toroidal field, making 
use of the Rossby 8-plane approximation and neglecting ohmic dissipation in a thin 
rotating spherical shell, Hide considered hydromagnetic waves as perturbations of 
the basic toroidal field. Malkus (1967) proposed and studied a non-uniform toroidal 
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magnetic field induced by a uniform current density along the axis of rotation parallel 
to the unit vector k 

( 1 . 1 )  
where Bo is the maximum strength of the field in the sphere, r is a position vector 
and ro is the radius of the fluid sphere. Malkus considered slight perturbations to 
the motionless state with the magnetic field (1 .1)  in a perfectly conducting, inviscid 
rotating fluid sphere and found that solutions describing hydromagnetic waves can be 
obtained. Quite remarkably, Malkus was able to reduce the analysis of the problem to 
that of the corresponding non-magnetic problem. Since then the magnetic field (1 .1)  
has been extensively studied with or without diffusive effects in different geometries 
owing largely to the fact that the Malkus’ field model leads to a considerable 
mathematical simplification. With a local analysis, Acheson ( 1972, 1978) demonstrated 
that the field ( 1 . 1 )  cannot be field-gradient unstable. In order that a toroidal magnetic 
field B(s)  becomes unstable through the mechanism of the field-gradient instability, 
where s is the distance from the axis of rotation, B(s)  has to increase somewhere 
faster than s3I2, 

Bo = (Bo/ro)k x Y, 

For the magnetic field ( l . l ) ,  A = 0. The results of Acheson were confirmed by 
extensive numerical analyses in cylindrical geometries by Fearn ( for examples, see 
Fearn 1983). 

It was first noticed by Roberts & Loper (1979) that the hydromagnetic waves with 
the azimuthal wavenumber m = 1 produced by the field ( 1 . 1 )  in an axisymmetric 
container with f = 0, where f is the magnetic diffusivity of the container, can 
be diffusively unstable. Without using explicit solutions of the zero-order problem, 
they were able to derive an instability criterion: the field ( 1 . 1 )  may be unstable 
to westwardly propagating hydromagnetic waves for any non-zero magnetic field 
strength if 

(1.3) 

where I’ - B;, rn is the azimuthal wavenumber and 00 is the frequency of the waves 
(see #2 for details). But it should be noted that the instability criterion (1.3) can be 
only applied to the case f = 0 in which magnetic boundary-layer solutions are not 
needed. As long as f # 0, both the explicit solution of the zero-order problem and 
the complete boundary-layer solution are required in order to determine the stability 
of the field (1.1). Roberts & Loper (1979) found that the solutions of hydromagnetic 
waves that satisfy the criterion (1.3) are stable within a sphere when f # 0 including 
f + 0. No unstable modes in a spherical container with f i  # 0 were found in their 
analysis. Roberts & Loper (1979) attributed the stability of the field (1 .1)  in a sphere 
to the stabilizing influence of the spherical boundaries which, unlike for a cylinder, 
are not parallel to the axis of rotation. Furthermore, it was not recognized that the 
magnetic spherical boundary layer can be the sole cause of magnetic instabilities. 

A detailed investigation of the magnetic field ( 1 . 1 )  in a rotating fluid layer, including 
the effects of both magnetic and thermal diffusion, was carried out by Soward (1979). 
The analysis of thermal instabilities with the presence of the field (1.1) was then 
extended to a rapidly rotating fluid sphere containing a uniform distribution of heat 
sources (Eltayeb & Kumar 1977; Fearn 1979a,b; Eltayeb 1992). Kerswell (1994) has 
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recently used the field (1.1) to examine the tidal excitation of hydromagnetic waves 
in a rotating spheroid like the realistic fluid core of the Earth. It is perhaps not an 
overstatement that the Malkus field model (1.1) is the most extensively studied model 
of hydromagnetic processes in rotating systems. It should be mentioned, though, that 
many important instabilities are filtered out by the magnetic field (1.1) and other 
more realistic magnetic fields in spherical geometry have therefore been examined 
(Fearn & Proctor 1983; Fearn & Weiglhofer 1991; Zhang & Fearn 1993, 1994 ). 
A more complete discussion and additional references may be found in two recent 
review papers by Fearn (1993) and Proctor (1994). 

A point of central importance to the present analysis is that the hydromagnetic 
solutions obtained from a perfectly conducting fluid (for example, Malkus 1967) 
cannot satisfy all magnetic boundary conditions that are required at the interface 
between the fluid and the container. A Hartmann boundary layer is thus needed in 
order that all the necessary magnetic boundary conditions are satisfied. The vital 
importance of Hartmann layers to the problem of hydromagnetic instability has 
not been much discussed. The primary aim of this paper is to examine the effects 
of the spherical Hartmann boundary layer on the instabilities of the dynamically 
stable hydromagnetic wave solutions studied by Malkus (1967, 1968). Our discussion 
mainly focuses on the following five cases. First, we extend the analysis of Roberts & 
Loper (1979) (viscosity v = 0 )  by including the effects of the Ekman boundary layer ( 
v # 0). It is stressed that, even though the explicit boundary solutions are not needed 
when perfectly conducting and stress-free boundary conditions are assumed, it is 
still solely the magnetic Hartmann boundary layer that causes instability of the field 
( 1.1). We then examine similar instabilities in a nearly perfectly conducting spherical 
container, a nearly insulating container and a container of arbitrary conductivity. 
Finally, we investigate the problem of the corresponding magnetoconvection in a 
rapidly rotating sphere by assuming that the container is a perfect conductor and that 
velocity boundary conditions are stress-free. Complete analytical magnetoconvection 
solutions in closed form are then obtained in the limit of small Prandtl number. 
The main conclusion of the paper is that, driven solely by the magnetic Hartmann 
boundary layer, the Malkus magnetic field (1.1) is always unstable in a rapidly 
rotating sphere regardless of the magnetic boundary condition in the limit of vanishing 
viscosity of the fluid. 

The remainder of the paper is organized as follows. Perturbation analysis and the 
formulation of boundary-layer solutions are presented in $2. This is followed by a 
discussion of hydromagnetic instability for different conductivities of the container. 
In $4, we examine the problem of magnetoconvection in a rapidly rotating sphere. 
The paper closes with a summary of the main results and some remarks in $5. 

2. Perturbation analysis and the Hartmann layer 
2.1. Governing equations 

Consider an electrically conducting fluid of constant magnetic diffusivity 1, kinematic 
viscosity v and density p. The fluid is enclosed in a spherical container of inner radius 
ro with magnetic diffusivity f i  and the whole system rotates rapidly with a constant 
angular velocity Qk. To write the dimensionless equations, we let 

-+ Tor, f + t !Z ' ,  B + (pp)'/*OroB, P + PproQ', 



266 K .  Zhang and E H .  Busse 

for length, time, magnetic field and pressure respectively. The fluid motions are then 
governed by the following dimensionless equations : 

(i - EvV2) u + 2k x u = -VP + (V x B )  x B, 

V - u = O ,  V * B = O ,  (2.2a, b )  

E V2  B = V x (U x B),  (i- #I ) 
while the magnetic field in the container, B, is described by 

i? v2 B = o .  (i- A ) 

(2.3) 

(2.4) 

The non-dimensional parameters - the magnetic Ekman number E#I for the fluid, 
the magnetic Ekman number 8, for the container and the Ekman number E ,  - are 
defined by 

In view of the application to the Earth's liquid core, viscous dissipation is likely to 
be much smaller than magnetic dissipation, 

EV 
€ = --el. 

EL 

Consequently, we shall in some cases neglect the term EvV2u in equation (2.1). It 
follows that the velocity boundary condition simply requires 

u * i  = 0 (2.5) 

at r = 1, where ( r , 6 , 4 )  are spherical coordinates with unit vectors ( i ,8 ,$ ) .  We shall 
also assume that both magnetic Ekman numbers are small: 8 ~ 4 1  and E l " 1 .  A 
boundary-type solution is thus required not only for the maenetic field B in the fluid 
adjacent to the container but also for the magnetic field B in the container close 
to the interface between the fluid and container. The boundary conditions at the 
interface are that the magnetic field and the tangential component of the electrical 
field are continuous : 

B = B ,  i x E = i x E ,  r = l .  (2.6a, b).  
A A 

2.2. Perturbation analysis 
This paper concentrates on the linear stability of the Malkus field (1.1) which may 
be written in the dimensionless form 

Bo = Ik x r (2.7) 
A 

with 
I = -  QA 

0' 
where QA is the Alfvh angular frequency. Since it is well-known that axisymmetric 
perturbation is of secondary importance to the problem of hydromagnetic instability, 
we look for solutions in the form of the azimuthally travelling waves 

i(mb+ur) [u, ( B  - Bo), B, PI = [u, ( B  - Bo), B, Pl(6, r)e 



On hydrornagnetic instabilities 267 

of the linearized equations (2.1-2.3) with azimuthal wavenumbers rn 2 1. We assume 
that solutions of these equations for an arbitrarily small but non-zero E l  can be 
written as 

u = uo + ( ~ b  + Ui), (2.8a) 

P = PO + (Pb + pi), (2.8b) 

B - BO = bo + (b  + hi), ( 2 . 8 ~ )  

0 = w 0 + 0 1 ,  (2.8d) 

where (UO, bo, PO, W O )  represent the solution for a perfectly conducting fluid with 
E l  = 0. The perturbations introduced by an arbitrarily small, but nonzero E l  are 
divided into the small interior perturbations, Uj, bj and Pi : 

ui = O((Uo(E;(2),  bl = O ( ( b o ( E y ) ,  Pi = O(P0E;I/2), 

and the boundary-layer corrections, ub,b and Pb, which are non-zero only in the 
Hartmann boundary layer. A small perturbation to 00 is denoted by 01. After 
substituting expansions (2.8~-d) into equations (2.1-2.3) and linearizing the resulting 
equations, we obtain at leading order ( E l  = 0) 

m212 
Y[uO,nO] = ioo ( 1  - T) UO + 2 (1 - $) k  ̂ x uo + Vno = 0, (2.9) 

V * U O  =o, V - b o  =o, (2.10a, b)  

(2.11) 

together with boundary conditions uo i = 0 and bo E = 0 at r = 1, where 

no = PO + I ( R  x r )  - (rk^ x r + bo). 

There exist apparently 0o3 possible solutions, (uO, bo, Po, coo), for equations (2.9-2.11). 
In order to study the instability characteristics of the field (2.7), it is necessary to 
select some appropriate classes of solutions among the entire manifold of solutions, 
which can provide a sufficient condition for instability. Malkus (1967) showed that 
equations (2.9-2.1 1 )  lead to a modified Poincark equation. A detailed discussion 
of the Poincark equation may be found in the books by Greenspan (1969) and 
Lyttleton (1953). Solutions of equations (2.9-2.1 1) are, in general, characterized by 
three different indexes, (l,rn,n): rn is the azimuthal wavenumber, n indicates the 
structure in the s-direction and the integer I ,  1 > m, usually represents the degree 
of complexity of solutions in the z-direction, where cylindrical coordinates (s, 4, z )  
are used. Following Malkus (1967, 1968), we select the two classes of solutions of 
equations (2.9-2.11) that correspond to the simplest structure of the fluid motions 
along the direction of the axis of rotation. This selection is based on an expectation 
that the modes with complicated z-structure in realistic rapidly rotating systems, 
without or with the influence of magnetic fields, are of secondary significance (Busse 
1970, 1982; Zhang 1995b). The first class is referred to as equatorially anti-symmetric 
waves (modes) (1 - rn = 1, for details see Zhang 1993) with the following equatorial 
symmetry: 

(us, u z ,  u&, z , 4 )  = (--us, uz, -uf$)(s, -z,  41, 
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and the second class will be called equatorially symmetric waves (modes) ( I  - m = 2) 
with 

(us, K, U & ) ( S ,  z, 4) = (us, -&, u&, -z, 4). 
There are no restrictions on the value of azimuthal wavenumber rn and the maximum 
value of index n is determined by the eigenvalue relation (Greenspan 1969). It is 
also worth noting that the second class of solutions represents, at leading order, the 
convection solutions for fluids with small Prandtl number (Zhang 1994). 

Malkus (1967) also showed that solutions of equations (2.9)-(2.11) in the form 
of azimuthally travelling waves may become dynamically unstable if I is sufficiently 
large. But the critical value, I0 = O( l), required for this type of instability is too large 
to be geophysically relevant (Roberts & Loper 1979; Fearn 1993; Proctor 1994). This 
paper is only concerned with hydromagnetic instabilities in the interval I c l o ,  where 
the magnetic field (2.7) is stable without the effects of ohmic dissipation. 

In studying the diffusive instability of the dynamically stable hydromagnetic modes, 
we must carry the perturbation problem to the next order by adding ohmic dissipation 
to the system, including both internal and boundary dissipation. Governing equations 
at the next-order perturbation can be readily obtained by substituting expansions 
(2.8~-d) into equations (2.1-2.3) and subtracting equations (2.9-2.1 1)  

(2.12) iwoul+ 2R x u1+ V P I  = 214 x bl + irnzbl - iwluo, +E,v’ (u~ + ul), 
V * U l  =o, V.b l  =o, (2.13a, b)  

(iwo - E A v ’ ) ~ ~  - irnIul = E L V ’ ~ ~  - iwlbo, (2.14) 
where b1 = bi + b, P1 = Pi + pb and u1 = ui + ub. After some manipulation, equations 
(2.12-2.14) may be combined into a single differential equation 

1 12m2 12rn(wi - 12rn2) 
coo oO(w0 - 12m) 

C O O + - -  9 [ ~ 1 , 7 h l  = ~ 

-ioluo 

0 0  

where 

and where the small terms V2ui and V2bi in equation (2.15) have been neglected. It 
should be noted that, in writing equations (2.12) and (2.14), we have assumed that 
I 2 + E Y 2 ,  or more precisely, I = O(Ey4), 0 < a < 1. Note also that the magnetic field 
(bo + 6) needs to be matched to solutions of equation (2.4) at the interface between 
the fluid and the container, which is to be discussed in the next section. 

The inhomogeneous differential equation (2.15) must satisfy a certain solvability 
condition in order that it is solvable. We may obtain the solvability condition by 
multiplying equation (2.15) by the complex conjugate of UO, denoted by u;, and 
integrating over the volume of the sphere. Using the fact 

(2.16) 

where 1“ denotes the volume integral over the sphere and Js represents the surface 
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integral over the spherical surface at r = 1, we obtain 

where 

Since i o l  = iRe[wl] + 0, Q being the growth rate of disturbances, equation (2.17) 
leads to 

for a given wavenumber m and a given value of I. With the selected solutions UO, this 
equation provides a sufficient criterion for instability: the field (2.7) is unstable if the 
resulting growth rate is positive. 

An important result which can be immediately shown is that 

f J = O  

for any values of m,wo and I ( I < ZO) if the effects of the boundary-layer dissipation 
are neglected through the assumption b = 0 and ub = 0 in (2.18). This result follows 
from the fact that the velocity ui is orthogonal to V2bo and V’UO: 

(see Zhang 1994 for details) and that the second integral Y2 can be reduced to 

for both the anti-symmetric and symmetric modes. In other words, the stability 
characteristics are not affected at leading order by internal viscous and ohmic dissi- 
pations. Any hydromagnetic instabilities for I -= l o ,  if they exist, must be driven by 
the diffusive processes taking place in the thin hydromagnetic boundary layer. There 
are three different diffusive processes represented by the three integrals Sj,J = 1,2,3, 
through which we may identify the mechanism of hydromagnetic instability. First we 
note in equation (2.18) that 

wo - 12m 
wo(oi - 2Z2moo + 2Prn’) 

regardless of the sign of 00 for a sufficiently small value of I’ and wo = O(1). 
Note also that we are only interested in small amplitudes of the field (2.7). The 
existence of an instability is then determined by the sign and relative size of the 
three boundary integrals. The third integral is related to the Ekman-boundary-layer 
dissipation resulting from the combined effects of rotation and small viscosity, 

> O  

9 3  = s, UiV2UbdV < 0, 

which always provides a sink for the energy and thus a stabilizing influence on the 
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system. The first integral is associated with the magnetic Hartmann boundary layer, 
a magnetic boundary lager that can exist without rotation, 

00.91 = 00 U; - V2bdV < 0, J, 

s, 

which also always stabilizes the system. The second integral is also connected with 
the magnetic Hartmann boundary layer that is strongly influenced by rotation. The 
sign and size of the second integral 

- 0 0 . 9 2  = -ao iui (k^ x V2b)dV 

depend upon both the spatial structure of the boundary layer and the direction of 
propagation of the corresponding hydromagnetic wave. With a suitable structure and 
the right direction, the effects of the magnetic Hartmann boundary layer strongly 
affected by rotation can be destablizing and thus cause instability to the whole 
otherwise stable hydromagentic system. While detailed boundary-layer solutions are 
not needed when 1 = 0, to make further progress in the case 1 # 0 the problem of the 
Hartmann boundary layer must be solved to obtain explicit solutions for b. Clearly, 
the structure of the boundary layer is dependent on the magnetic properties of the 
container. 

2.3. The Hartmann boundary layer 
Noting that radial derivatives are dominant in the boundary type of solutions, we can 
derive the leading-order equations governing the Hartmann boundary flow simply by 
taking dominant terms in equations (2.12-2.14) and setting the interior perturbations 
6, = 0, ui = 0 and Pi = 0, 

iOoUb + 2k X Ub + ?(pa Vpb) = 21k X b + h l b ,  (2.19) 

(2.20) 

where we have assumed that, without loosing the key physics of the problem, e e l ,  so 
that the term E,,(a'U/&*) ( the boundary viscous dissipation) is neglected. Solutions of 
the Hartmann-layer equations (2.19-2.20) must be matched to the magnetic boundary 
layer solutions outside the fluid sphere governed by 

(2.21) 

It is convenient to introduce boundary-layer variables 

for the Hartmann layer and the exterior magnetic layer respectively. To solve the 
boundary equations (2.19-2.20), first note that two equations for the magnetic field b 
can be deduced : 

(2.22) 

(2.23) 
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where 
d 2(4 cos2 e - moo) 2m12 cos e(wo - m) 

0. = 0 0  + , A =  
a; - 4cosz e 0; - 4cOsze 

We then combine equations (2.22) and (2.23) into a single differential equation for b 
2 ($ - i,.> b + A'b = 0. (2.24) 

Since both magnetic fields, b and &, decay away from the interface, the boundary 
conditions 

(2.25) 
can be imposed. It is then straightforward to show that the solution of the boundary 
layer equation (2.24) satisfying boundary conditions (2.25) is 

I . -  

b(< = 00) = 0, B(< = 00) = 0 

and that the exterior boundary solution is given by 

(2.26) 

(2.27) 

where 

The complex vectors, {C , , j  = 1,2,3}, which are a function of 8, m and I ,  have to 
be determined by the matching conditions at the interface between the fluid and 
container. The first matching condition is (2.6a), which may be rewritten as 

B = b + b o  (2.28) 

at the fluid-solid interface. We can express the second boundary condition (2.6b), 
after using Ohm's law, by 

(2.29) E l i  x V x (bo + b) - I? x [uo x (k x r ) ]  = ,!?A$ x V x B. 

Noting that 

i x [uo x (k x r ) ]  = i x [k(r uo) - r(u0 * R ) ]  = o 
at r = 1 and making use of the properties of a boundary-layer solution, we can 
simplify the second condition to 

I db A d B  
EAr x - = E l i  x -. 

ar dr 
(2.30) 

It is worth mentioning that the normal components of {C , , j  = 1,2,3} cannot be 
determined by these matching conditions at the interface, although it can be readily 
shown from conditions (2.28) and (2.30) that 

F*C* =i.c2, r^*c3 = 2 i - c 2 .  

The normal components can be expressed in terms of the tangential components 
through the equation V . b = 0 in analogy with the problem of Ekman boundary 
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It is evident that the contribution of ohmic dissipation in connection with the normal 
components is of second order compared to the tangential components. Accordingly, 
the contribution from the normal components (2 C,, j = 1,2,3} will be neglected. 
We may also notice that the boundary solution (2.26) breaks down at the critical 
latitude 8, = cos-'(oo/2). But it is not expected that this singular character of the 
boundary-layer solution would produce a significant effect on the stability problem, 
because both the amplitude and the gradient of uo are weak at 8,. In the similar 
problem of convection with the Ekman boundary layer resulting from the non-slip 
boundary conditions (Zhang 1995a), the corresponding analytical solutions have the 
same singular character but a good quantitative agreement between the analytical 
solutions and fully numerical solutions is achieved. In the following section, we 
will use ( C j , j  = 1,2,3}, obtained through the matching conditions (2.28), (2.30), to 
examine the stability characteristics according to equation (2.18). 

3. Instabilities driven by the Hartmann boundary layer 

The simplest case of the instability problem corresponds to a perfect conducting 
container, = 0. This case was studied by Roberts & Loper (1979) and the instability 
criterion (1.3) was derived. In order to make a comparison with the previous results 
and also to examine the viscous influence on the instability, the analysis of Roberts & 
Loper (1979) is extended through the inclusion of the viscous effects associated with 
the stress-free v5locity boundary conditions. Magnetic boundary conditions (2.28) 
and (2.29) with EJ, = 0 become 

3.1. Perfectly conducting container: = 0 

2 .  (b  + bo) = 0, i x v x (bo + 6) = 0, (3.1) 

and the stress-free conditions at r = 1 may be written as 

Using boundary conditions (3.1) and (3.2), we can express the integrals, Y j ,  j = 1,2,3 
in the form 

$3 = -Iv IV x uo12dV. 

Substitution of Sj, j = 1,2,3, into equation (2.18) yields 
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where 

The instability criterion (3.3) is consistent with that (equation (1.3)) of Roberts & 
Loper if e = 0. To determine the stability of field (2.7), expressions for 00 are 
needed while explicit solutions of uo and bo are not required. Let us first consider the 
equatorially anti-symmetric hydromagnetic modes ( I  - m = 1)  with 00 given by 

wo = - [ 1 + S( 1 - 1 2 / I y ]  , 
m + l  

(3.4) 

where S is +1 or -1 and 

(3.5) 
1 

= m(m + 1)(2 - mz - m ) *  

Obviously, Q* < 0 if m > 1 and coo < 0. When m = 1 we obtain from (3.3) and (3.4) 

and 

Q = -E,  IV x uo12dV/ s, luO12dV, S = +l.  

Consider now the equatorially symmetric hydromagnetic mode (I - m = 2). For a 
given value of the wavenumber m and the field strength parameter I, there exist four 
different solutions of uo for this class with the corresponding frequencies 

where S1 and S2 are +1 or -1 and 1; is 

1; = 
(m’ + 6m + 6) + 2Sl(2m + 3 ) ~ l ” ~  

m(m + 2)(2m + 3)(-m2 - 2m + 2 + S 1 2 ~ 1 / 2 )  (3.7) 

with 
m 2 + 4 m + 3  

2 m + 3  . 
A =  

For S1 = 1, Sz = 1, hydromagnetic waves are fast and westward propagating (00 > 0); 
for S1 = 1,Sz = -1, the waves propagate eastward (00 c 0) except for m = 1, but are 
slow; for SI = -1,s~ = -1, the waves are fast and westward propagating; and for 
S1 = - 1 , s ~  = 1 the waves propagate eastward, but are slow. 

The relationship between Z 2  and wo for the four different types of solutions is 
presented in figure 1. The most interesting class is when the azimuthal wavenumber 
m = 1 and S1 = 1 (figure la):  both the fast and slow waves propagate westward 
(wg > 0) and become unstable when I 2  > I :  = 1.1177 without the diffusive effects. 
In this paper we shall mainly focus on this class of solutions but in the region 
I 2  < 1.1177 with 00 = 0 ( 1 )  where the system is not unstable without the effects of a 
hydromagnetic boundary layer. The growth rate Q* in equation (3.3) can be readily 
evaluated by using expression (3.6), and is shown in figure 2 for S1 = 1,S2 = 1 and 
m = 1 as a function of I2 in the region Z 2  < 1.1177 for different values of E. When 
the viscous effect is substantial, e = 0.5, the hydromagnetic system is stable in the 
region Z2 < 1 owing largely to the stabilizing viscous influences in the boundary layer. 
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0 0.4 0.8 I .2 0 0.4 0.8 1.2 
I2 I2 

FIGURE 1 .  The frequencies ~0 given by equation (3.6) plotted against 12.  Solid lines represent 
the cases (a) SI = l,Sz = 1 and (b)  S1 = - I , &  = + I ;  dashed lines correspond to the cases (a )  
SI = 1,Sz = -1  and (b )  S ,  = -1,s~ = -1. 

F~GURE 2. The 

0 0.2 0.4 0.6 0.8 1.0 

I* 
scaled growth rate, d ,  plotted against l 2  with 

for different values of e.  
m = l a n d l = O  

But the viscosity plays an insignificant role when E. < and the hydromagnetic 
instabilities driven by the boundary-layer effects grow at a rate proportional to E l .  
Our result which includes the effect of viscosity and uses explicit solutions for wo in 
a sphere is consistent with that of Roberts & Loper (1979) for E. = 0. 

3.2. Nearly perfectly conducting container: f i /A -4  1 
Another simple case of the stability problem is obtained when the conductivity of 
the container is much larger than that of the fluid: fillel. To leading order, the 
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matching conditions (2.28), (2.30) together with the boundary layer solutions (2.26) 
and (2.27) give 

Im 
0 0  

c3 = c1 + c2 - - [Uolr,, (3.10) 

where [XI,, denotes the evaluation of vector X at r = 1. On substituting the 
boundary-layer solution (2.26) together with (3.8) and (3.9) into equation (2.18) and 
integrating in the radial direction once, we obtain 

where analytical expressions in closed form for all integrals, involving both the 
equatorially symmetric and anti-symmetric modes, can be obtained. 

Consider first the equatorially anti-symmetric hydromagnetic modes ( 1  - m = 1). 
Solutions uo and bo in this class are purely toroidal, i uo = 0 and r  ̂ bo = 0 
(Malkus 1968). Making use of an expression for uo (for example, equations 20-21 of 
Zhang 1993), we obtain 

and 
27r(2m + 2)!! 
m(2m + 3)!! * 

(uo12dV = 

It follows that the growth rate of disturbances can be explicitly expressed as 

~??~'/~I~rn(ool~/~(oo - I2m) (2m + 3)(2 - m2 - m) 

Jzoo(w,Z + Pm2 - 212moo) 
c r =  9 (3.12) m + l  

where wo is given by equation (3.4). For a given value of the field strength I, it is 
obvious that cr < 0 if m > 1 and that Q = 0 if m = 1. The basic field (2.7) is thus 
stable with respect to perturbations of equatorially anti-symmetric waves. 

Consider now the equatorially symmetric hydromagnetic mode ( I  - m = 2). The 
corresponding analytical expressions for the integrals in equation (3.1 1) are too long 
to be explicitly presented here, although they can be readily obtained from solutions 
uo given by equations (13-15) of Zhang (1993). Several examples for the growth rate 
are shown in figure 3(a) calculated by using equations (3.6) and (3.1 1). The westward 
fast propagating (S1 = 1,Sz = 1)  mode with m = 1 is always unstable in the limit of 
vanishing viscosity of the fluid. It is worth noting that the viscous effect is completely 
neglected in this case, which would shift the region of instability by O(e) ,  in a similar 
way as we discussed in the case 1 = 0. The hydromagnetic instabilities grow at a 
rate proportional to Ei,. But for the same class of the wave with m = 2, which is 
also shown in the figure, the perturbations are damped. It can be concluded that, for 
a nearly perfectly conducting spherical container f / A <  1, the Malkus magnetic field 
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FIGURE 3. (a) The scaled growth rates, a/kl’l2 in the case of p = l / b l  and a/Ey’ in the case 

of pal, plotted against l 2  with m = 1. ( b )  The scaled growth rates a/Ey2 plotted against 1’ with 
m = I for different values of f i .  

(2.7) is always unstable in the entire range of the parameter l 2  for which the present 
analysis is applicable, if the viscous dissipation in the boundary layer is neglected. 

3.3. Nearly insulating container: A/ja 1 
A more complicated, but geophysically relevant case is when the conductivity of 
the spherical container is much smaller than that of the fluid: A/fial. In a first 
approximation, the matching conditions at r = 1 give 

-I m -Im . A  

200 2WO 
CI = - [UO + i t  x U O ] ~ , ,  Cz = -[uo - w x u0lr,, C3 = 0. (3.13) 

Substitution of the corresponding solution of the Hartmann-layer equation into (2.18) 
yields 

In writing this expression, we have neglected the following two integrals: 

based on the fact that both the functions iu; (t x uo) and (k - t)lu01~ are equatorially 
anti-symmetric and the function lo* + A1 is nearly equatorially symmetric. It  has 
been tested that the inclusion of these two integrals does not produce any noticeable 
change in the value of the growth rate. 

An analytical expression in closed form for equation (3.14) cannot be derived 
because of the factor lo* + A1 in the surface integral. In comparison with the case of 
a nearly perfectly conducting container, it is apparent that we do not anticipate any 
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fundamental changes in the stability characteristics. The introduction of the positive 
factor lo* + A J  in the surface integral in (3.14) by the nearly insulating boundary 
condition does not alter the sign of the growth rate. Except for replacing by 
EY', all the main features of the instabilities discussed in $3.2 can therefore be applied 

to the present case. Instead of o - 2 ~ ' ~ ~  in the limit i/A41, we have o - E:" in 

the limit A / h l .  The values of the growth rate as a function of Z2  with m = 1 
and m = 2 for the equatorially symmetric modes are also shown in figure 3(a). We 
can conclude that the Malkus magnetic field (2.7) is always unstable for a nearly 
insulating spherical container in the limit of vanishing viscosity of the fluid in the 
entire range of the parameter Z 2  for which the present analysis is applicable. 

3.4. Container with arbitrary conductivity 
For the container of arbitrary conductivity, the ohmic dissipation that takes place 
in the Hartmann layer as well as in the exterior magnetic layer must be taken into 
account. To leading order, the matching conditions give rise to 

C ,  -Zm J ~ O J ' / ~ [ J O *  +AJ'12/?(1 + S+S")  + 2 ) 0 0 1 ~ / ~  + iJo' + AIfl(S" - S + ) ]  -=-  
Cf 4Wo 

~2 - -1m lool"2[lw* - A ~ ' / ~ P ( I  + S-P) + 2100~'/~ + ilw* - A I P ( S ' ~  - s-)]  
c- 400 

[lo' + A l p  + 1001 + lo' + AI'/q?lwo11'2(1 + SfS")] 

[lo' - Alp2 + 100) + 10' - AI'/2ploop2(1 + S - S O ) ]  

7 

(3.15) 

- _ -  
3 

(3.16) 
where 

After inserting the solution for the Hartmann boundary layer into equation (2.18) 
and integrating in the radial direction once, we obtain 

Ey2Pm(wo - 12m)loo11/2 

,/3wo(w,2 + Pm2 - 2Pmoo) 

C+ = [uo +iv^ x uolr,, C- = [uo - i t  x UO],.,, f i  = ~ / 2 .  

o =  

J W *  + Al'/2(Jo* + A y p  + 1 0 0 J l / 2 )  

x [ ( -m - 2k i)lu0l2 + i(2R + m t )  (ug x ui)] } dS /l Im12dV. (3.17) 

The surface integrals that have been neglected in the case of nearly insulating 
containers are now included, though the numerical evaluation with or without them 
for different values of /3 still indicates that they make a negligible contribution. 
An important result emerging from (3.17) is that the different magnetic boundary 
conditions cannot alter the main features of the instability. This is because the 
arbitrary conductivity of the container only introduces a factor that is always positive 
for any values of /?. Though the relevant expressions become more complicated, 
involving the ratio between the diffusivities of the container and of the fluid, the main 
features of the instability remain unchanged. All conclusions in the previous sections 
can be applied in principle to the present case after a slight modification. Calculations 
of the relevant surface integrals have been performed for many different values of /3. 
Apart from the expected variation of time scale of instability (o - 2~''~ for large 
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p while G - E?/ for small j?) there are no significant basic changes in the stability 
properties. For the purpose of comparison, the growth rates calculated by using (3.6) 
and (3.17) for different values of p are shown in figure 3(b) for the symmetric modes. 
We thus generalize the conclusion given at the end of the previous sections to the 
case of a spherical container of arbitrary conductivity. 

4. Magnetoconvection 
In this section we extend the perturbation theory of convection in a rapidly rotating 

sphere at small Prandtl number (Zhang 1994) by including the effects of the magnetic 
field (2.7). Without loss of generality, we may introduce the basic temperature field, 
Ts(r), given by 

where /?* is a constant related to a uniform distribution of heat source (Chan- 
drasekhar 1961). We shall assume that the spherical container is a perfect conductor 
and that the velocity boundary conditions are stress-free. The same perturbation 
expansion as (2.8) in $2 can be used. While the zero-order problem is the same as in 
$2 in the limit of small Prandtl number (Zhang 1994), the equation of motion in the 
next order becomes 

icooul + 2/; x u1 + VP1 = 211; x bl + imZbl + RrO + bl - iwluo + E,V2(uo + uh). (4.2) 

The other equations (2.13) and (2.14) remain unchanged. A heat equation is thus 
required to complete the system. The heat equation with the temperature perturbation 
denoted by O and scaled by P'r iv /K,  where K is the thermal diffusivity, may be written 
as 

(4.3) 

VT,  = -p8r, (4.1) 

(iooP, - E,V2)0 = Y - uo. 

The combination of equations (4.2) and (2.13) and (2.14) gives rise to 

Imaginary and real parts of the solvability condition yield 

I m  2iZm- 
w1 1 ui * (uo + -bo - -k x bo 

V 0 0  0 0  
(4.5) 

. ,  
Upon using equation (2.9), we may write equation (4.5) as 

12m2(12m2 - 02) 

00 - 12m 
0 1  =o. ~1 Iuol'dV [oi + 12m2c00 + (4.7) 

Since the expression in the square braket is in general non-zero, the correction for the 
frequency of convection is zero: 01 = 0. The critical Rayleigh number R for the onset 
of convection is determined by equation (4.6). In the limit of small Prandtl number 
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it can be readily shown that the integral on the right-hand side of equation (4.6) is 

By a similar analysis to that in 93, equation (4.6) can be reduced to 

12m(o,Z - 12m2) 
00 - 12m ' 

R' = EW; + I'm2 - 

where R' is the re-scaled Rayleigh number defined as 

(4.9) 

(4.10) 

With the simple analytical expression (4.9) for the critical Rayleigh number, we are 
able to identify the precise reason why the negative-Rayleigh-number convection 
occurs in a rotating fluid sphere in the presence of the field (2.7). In the absence of 
both the viscous and magnetic dissipations in the boundary layer, Ub = 0 and b = 0, 
we obtain the critical Rayleigh number 

R = 0. 

In the absence of the magnetic-boundary-layer effect, b = 0, equation (4.6) gives rise 
to the critical Rayleigh number 

I n  

R = E , J V  IV x Wl'dV /Iv IVOl'dV > 0, (4.1 1 )  

which is the same as the case of non-magnetic convection (Zhang 1994). In the 
presence of both the viscous and magnetic dissipations in the boundary layer, Ub # 0 
and b # 0, the first and second terms on the right-hand side of (4.9) are always positive, 
providing a sink for the energy by viscous and magnetic dissipation. However, the 
third term, which is associated with the structure of the magnetic boundary layer 
strongly modified by rotation, can be negative, releasing energy stored in the magnetic 
field and thus driving convection solely from the thin spherical boundary layer at the 
interface between the fluid and solid. 

The values of R' for the onset of convection in equation (4.9) can be readily 
obtained by using the analytical expression for oo given by equation (3.6). A number 
of cases for R' = R'(12,m = 1) are shown in figure 4 for different values of E .  For the 
fast waves, S1 = 1 and S2 = 1, the sign of the Rayleigh number depends mainly on 
the size of E and I * :  if E = 0.1, R' < 0 for I 2  < 0.4 and R' > 0 for I 2  > 0.4. But the 
Rayleigh number is only slightly influenced by the viscosity parameter E for the slow 
waves, which is evident in equation (4.9). 

5. Concluding remarks 
We have examined the instability of an electrically conducting fluid in a rapidly 

rotating fluid sphere with the Malkus magnetic field. It is found that the spherical 
boundary does not have the stabilizing influence suggested by Roberts & Loper (1979). 
On the contrary, a new mechanism of hydromagnetic instability driven solely by the 
spherical Hartmann boundary layer is identified. For I < Io, ohmic dissipation in the 
spherical boundary layer is the only cause for instabilities of the field configuration 
(2.7). It follows that caution must be used if one uses the magnetic field (1 .1)  in a 
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FIGURE 4. The scaled Rayleigh number R' with rn = 1 for (a )  the equatorially symmetric west- 
ward-propagating fast modes and (b)  equatorially symmetric eastward-propagating slow modes 
plotted against the parameter I *  for different values of F. 

spherical geometry and, in particular, if a numerical scheme is involved, because a 
good resolution of the Hartmann boundary layer will be essential. 

An important question is then why Roberts & Loper (1979) did not find the 
unstable modes in a sphere of arbitrary conductivity. To avoid confusion of notation 
concerning our Rayleigh number, we denote their parameter R ( see equation 3.14, 
Roberts & Loper 1979) by 8, which is defined as 

in our notation. Note also that their index n is the same as our index I and that their 
00 is the same asAour -00. A key for providing an answer to the question is to note 
that m = 1,l  < R < 2, and 00 > 0 are not the sufficient conditions for instability 
in a perfectly conducting spherical container. This can be readily seen by rewriting 
equation (3.3) in terms of R :  

where m = 1 and the viscous term has been neglected by setting E = 0. If we apply 
the restriction 

(5.3) 
as Roberts & Loper did in their search for an unstable mode, we obtain the growth 
rate from equations (5.2) and (5.3) 

-0 = ; ( 2 - R ) I * ,  1 2 4 1 ,  1 < R < 2, 

0. = -1 - - y ( 2  - &)& + O(I4), ( 5.4) 

where Z 2 e l  and 1 < & < 2. It follows that the m = 1 modes with the restriction (5.3) 
which are considered by Roberts & Loper are always stable. It is the restriction (5.3) 
and its subsequent approximation in the analysis of Roberts & Loper (1979) that 
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rules out the instability not only in a spherical container of arbitrary conductivity but 
also in a perfectly conducting spherical container. 

Let us clarify the situation further through the example ( n  = 3 and m = 1, the first 
case in their table 1 and Appendix C ) which was studied by Roberts & Loper (1979). 
For the case 0 < Z 2 + l ,  n = 3 and m = 1, there are always four different modes for 
any given value of Z2.  The corresponding frequencies of the modes are giyen by our 
equation (3.6). To exclude the two modes that do not give rise to 1 5 R < 2 and 
00 > 0, we set SI = 1 in equation (3.6). The other two modes with 1 < R < 2,oo > 0 
are then given by S2 = -1 and S2 = 1 with S1 = 1. We first examine the case S2 = -1. 
Equation (3.6) with Z241 and S2 = -1 gives rise to 

Substituting 00 into (5.1) yields 

1 
15 f? = 2 - -(5 + @)(13 - 2@)(2@ - 5 )  + O(Z2) = @ - 5 + O(Z2), (5.6) 

which gives rise to = 1.32455532 as in their table 1 and in Appendix C. This is the 
mode studied by Roberts & Loper (1979) which satisfies the restriction (5.3). But this 
mode is stable for any type of magnetic boundary conditions. We now examine the 
case S2 = +l. The frequencies 00 of the mode can be obtained from equation (3.6) 
with f 2 a l  and S2 = 1: 

0 0  = $(1+ m) + 0(Z2). (5.7) 
Note that this mode is ruled out by the restriction (5.3) in the analysis of Robert & 
Loper. Inserting 00 into (5.1), we again obtain 

R = @ - 5 + O(12). (5.8)  

Both the modes have exactly the same value of R at leading order. However, the mode 
with equations (5.7) and (5.8) is unstable in the whole range 0 < 2 c 00 and the mode 
with equations (5 .5 )  and (5.6) is stable in the whole range 0 < 2 < 00. In summary, 
the restriction (5.3) imposed by Roberts & Loper excludes the unstable modes in 
a spherical container of arbitrary conductivity, including the perfectly conducting 
container. 

It is also important to note that the time scale used in this paper is much shorter 
than the magnetic diffusion time scale TO = $A, which is normally used (see for 
example, Fearn 1993 and Zhang & Fearn 1994). When the magnetic diffusion time 
scale is used, the appropriate non-dimensional parameter is the Elsasser number A 
defined by 

The relationship between A and Z 2  is given by 

Z 2  = A E l .  

The present analysis is based on the limit E l 4 1  and is valid for Z = O ( E y ) ,  
0 < CL < 1 ( i.e. A41). As a consequence, our analysis cannot provide the critical 
value of the Elsasser number A required for instability. Fearn (1988) studied the 
instability problem in a cylinder by solving the complete equations numerically. He 
found that the critical Elsasser number increases as E l  decreases. It was shown that 
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the exceptional mode of Robert & Loper in a cylinder is only unstable for Elsasser 
number much larger than that thought to be present in the Earth’s fluid core, leading 
to the conclusion that the instability found in a cylinder cannot play an important 
role in the dynamics of the Earth’s core (Fearn 1988). But there are no such studies 
for the instability in a rapidly rotating sphere. 

The idea that instabilities can be caused by the effects of a diffusive boundary layer 
is not new in the context of hydrodynamic stability theory. It  is well-known that an 
inviscid fluid flow can be stable but the corresponding viscous flow may be unstable: 
viscous diffusion is the cause of the instability. This paper provides an analogy in a 
spherical hydromagnetic system where the ohmic dissipation in a magnetic boundary 
layer influenced by rotation is the cause of hydromagnetic instability. 

K.Z. is supported by the SERC and a Leverhume grant. We would like to thank 
the referees for their constructive comments which led to a significant improvement 
of the paper. 
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